СЕРДЕЧНАЯ ДЕЯТЕЛЬНОСТЬ ОБЛУЧЕННЫХ ЖИВОТНЫХ ПРИ ВОЗДЕЙСТВИИ ОСТРОЙ ГИПОКСИИ

В целях определения компенсаторных возможностей, проявляющихся при воздействии на организм различными всенародными факторами среды, нами были проведены исследования по изучению функциональной деятельности сердца животных в условиях острой гипоксии.

Гипоксические условия создавались подъемом животных в барокамере на высоту 7500 м. Реегистрация электрокардиограммы производилась до подъема животных, сразу после подъема на указанную высоту, через 15 мин экспозиции на высоте, при спуске в обычные условия атмосферного давления и спустя 15 мин после спуска.

По изменениям функционального состояния сердца при воздействии острой гипоксии мы судили о реактивности животных после кровопускания (24—30%) и рентгеновского облучения (800 р). В норме, до подъема, частота сердечных сокращений подопытных животных составляла в среднем 203 ± 14,7 ударов в минуту, сразу после подъема на высоту 7500 м наступило заметное урежение сердцебиения (82% от исходного) (табл. 1); при некотором пребывании на высоте (15 мин) урежение частоты сердечных сокращений сменялось учащением (111%), после спуска исходная частота сердцебиений постепенно восстанавливалась.

Эти данные показывают, что еще у совершенно здоровых животных при воздействии острой гипоксии наступают существенные изменения в частоте сердечных сокращений, обусловленные фазовой сменной возбудимости вегетативной нервной системы и коры головного мозга.

Надо полагать, что при быстром подъеме вследствие повышения тонуса наступает вагусное торможение, и лишь через некоторое время после пребывания на высоте деятельность сердца усиливается. Как урежение в начале подъема, так и учащение сердечной деятельности после некоторого пребывания на высоте являются реакциями приспособительного характера.

Многочисленными экспериментальными данными установлено, что кора больших полушарий принимает активное участие в этом. По мере развития гипоксии корковые потенциалы уменьшаются по величине, частоте и могут даже полностью исчезнуть. При возобновлении доступа воздуха они очень скоро восстанавливаются.
В первые минуты пребывания животных в условиях всевозрастающей гипоксии, видимо, повышается возбудимость коры головного мозга, которая оказывает действие на соответствующие подкорковые центры, вызывая тем самым брадикардию. После 15 мин пребывания кроликов на высоте, когда кровь, снабжающая кору, обедняется кислородом, корковые потенциалы постепенно ослабевают над подкорковыми сердечными центрами, вызывая учащение сердечных сокращений. При возвращении же животных в нормальные условия атмосферного давления усиление доступа кислорода быстро восстанавливает корковые потенциалы, и тормозящее действие коры на сердце снова возрастает.

В работах некоторых авторов [1—4 и др.] отмечается учащение сердечных сокращений животных в условиях пониженного атмосферного давления, что соответствует нашим данным, только после некоторой экспозиции их на высоте. Однако первичная реакция—уменьшение сердечных сокращений непосредственно после подъема, по-видимому, по методическим или каким-либо другим причинам, этими авторами не было отмечено.

После установления нормы нашего задача заключалась в определении функциональных особенностей сердца при кровопотере и рентгеновском облучении животных. С этой целью и производилось кровопускание (перерезкой бедренной артерии), в объеме 24—30% циркулирующей крови.

При воздействии острой гипоксии после кровопускания были обнаружены некоторые особенности: здесь также непосредственно после подъема наблюдалось урежение сердечных сокращений, но в более выраженной форме, после 15 мин пребывания животных на высоте оно постепенно сменялось учащением. Однако если до и после кровопускания изменения сердечных сокращений на факторы высоты носили почти одинаковый характер, то на спуск после кровопускания вместо урежения, которое имело место у интактных животных, наблюдалось, наоборот, учащение сердцебиения.

Затем животные были облучены рентгеновскими лучами дозой 800 г, и в дальнейшем исследования проводились в динамике лучевой болезни.

В первый день после облучения еще до подъема частота сердечных сокращений была несколько повышенной (115% от исходного) (табл. 1). При подъеме животных на ту же высоту (7500 м) наступало резкое урежение сердечных сокращений (59%), которое после 15 мин пребывания на высоте несколько восстанавливалось, а при спуске переходило в выраженную синусовую тахикардию.

На 10-й и 20-й дни после облучения также сразу после подъема ритм сердечных сокращений урежался, а после 15 мин пребывания на высоте исходный ритм несколько восстанавливался. При возвращении же животных в условия нормального атмосферного давления частота сердечных сокращений заметно учащалась.

Параллельно с этим в 1-й, 10-й и 20-й дни лучевой болезни сразу
Таблица 1

<table>
<thead>
<tr>
<th>Время регистрации</th>
<th>Частота сердечных сокращений</th>
<th>Интервалы, сек</th>
<th>Высота зубцов, мв</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R—R</td>
<td>P—Q</td>
<td>Q—T</td>
</tr>
<tr>
<td>В норме</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>До подъема</td>
<td>203±14,7</td>
<td>030</td>
<td>008</td>
</tr>
<tr>
<td>На высоте 7500 м</td>
<td>168±7,4</td>
<td>036</td>
<td>009</td>
</tr>
<tr>
<td>После 15 мин пребывания</td>
<td>231±6,8</td>
<td>026</td>
<td>008</td>
</tr>
<tr>
<td>Спуск</td>
<td>207±13,5</td>
<td>030</td>
<td>008</td>
</tr>
<tr>
<td>Через 15 мин после спуска</td>
<td>222±16,2</td>
<td>026</td>
<td>008</td>
</tr>
<tr>
<td>После кровопускания</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>До подъема</td>
<td>215±15,4</td>
<td>028</td>
<td>008</td>
</tr>
<tr>
<td>На высоте 7500 м</td>
<td>143±5,7</td>
<td>038</td>
<td>008</td>
</tr>
<tr>
<td>После 15 мин пребывания</td>
<td>241±8,9</td>
<td>026</td>
<td>007</td>
</tr>
<tr>
<td>Спуск</td>
<td>247±17,3</td>
<td>024</td>
<td>008</td>
</tr>
<tr>
<td>Через 15 мин после спуска</td>
<td>230±20,1</td>
<td>026</td>
<td>009</td>
</tr>
<tr>
<td>1 день после облучения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>До подъема</td>
<td>274±18,5</td>
<td>022</td>
<td>006</td>
</tr>
<tr>
<td>На высоте 7500 м</td>
<td>161±5,5</td>
<td>070</td>
<td>008</td>
</tr>
<tr>
<td>После 15 мин пребывания</td>
<td>234±11,4</td>
<td>026</td>
<td>008</td>
</tr>
<tr>
<td>Спуск</td>
<td>292±17,7</td>
<td>026</td>
<td>005</td>
</tr>
<tr>
<td>Через 15 мин после спуска</td>
<td>280±16,2</td>
<td>022</td>
<td>008</td>
</tr>
<tr>
<td>10 день после облучения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>До подъема</td>
<td>221±18,8</td>
<td>028</td>
<td>008</td>
</tr>
<tr>
<td>На высоте 7500 м</td>
<td>151±6,3</td>
<td>068</td>
<td>008</td>
</tr>
<tr>
<td>После 15 мин пребывания</td>
<td>209±9,4</td>
<td>028</td>
<td>008</td>
</tr>
<tr>
<td>Спуск</td>
<td>243±12,7</td>
<td>024</td>
<td>008</td>
</tr>
<tr>
<td>Через 15 мин после спуска</td>
<td>262±17,4</td>
<td>022</td>
<td>008</td>
</tr>
<tr>
<td>20 день после облучения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>До подъема</td>
<td>212±14,2</td>
<td>028</td>
<td>009</td>
</tr>
<tr>
<td>На высоте 7500 м</td>
<td>151±5,5</td>
<td>066</td>
<td>008</td>
</tr>
<tr>
<td>После 15 мин пребывания</td>
<td>226±8,8</td>
<td>026</td>
<td>007</td>
</tr>
<tr>
<td>Спуск</td>
<td>236±12,6</td>
<td>026</td>
<td>008</td>
</tr>
<tr>
<td>Через 15 мин после спуска</td>
<td>222±15,2</td>
<td>028</td>
<td>008</td>
</tr>
<tr>
<td>30 день после облучения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>До подъема</td>
<td>232±20,2</td>
<td>026</td>
<td>008</td>
</tr>
<tr>
<td>На высоте 7500 м</td>
<td>152±5,8</td>
<td>052</td>
<td>008</td>
</tr>
<tr>
<td>После 15 мин пребывания</td>
<td>243±10,4</td>
<td>042</td>
<td>007</td>
</tr>
<tr>
<td>Спуск</td>
<td>243±14,5</td>
<td>042</td>
<td>008</td>
</tr>
<tr>
<td>Через 15 мин после спуска</td>
<td>242±16,5</td>
<td>042</td>
<td>008</td>
</tr>
</tbody>
</table>

После подъема у большинства животных была отмечена также резко выраженная аритмия сердечной деятельности.

Хорошо выраженные брадикардия при подъеме и тахикардия при спуске вместе с аритмией сердца в период лучевой болезни можно объ-
яснять существенными сдвигами в нервногуморальной регуляции сердца и повреждением сердечной мускулатуры.

На 30-й день после облучения ритм сердечных сокращений несколько приближался к исходным данным: так, например, возвращение животных в условия обычного атмосферного давления после их подъема вызывало уже не учащение сердечных сокращений, как это было в предыдущие дни болезни, а некоторое урежение, наблюдаемое у интактных животных.

В ЭКГ нами были изучены также интервалы P—Q, характеризующие предсердно-желудочковую проводимость, и Q—T—длительность электрической системы.

У интактных животных до подъема P—Q равнялся 0,08 сек, Q—T—0,16 сек. Резкие колебания частоты сердечных сокращений под действием острой гипоксии в некоторой степени отражались и на проведении возбуждения по сердцу, т. е. при урежении сердечных сокращений наблюдалась тенденция к увеличению интервалов, а при учащении, наоборот, к укорочению их.

После кровопускания и в период лучевой болезни, в особенности на 10-й, 20-й дни, эти изменения P—Q и Q—T были выражены в большей степени.

Вольтаж зубцов менялся следующим образом: зубец R несколько уменьшался (от 04 мв до 03 мв), а высота зубцов S и T не менялась. При возвращении в нормальные условия атмосферного давления наблюдались некоторое увеличение всех трех зубцов:

R—от 04 мв до 05 мв, S—от 04 мв до 05 мв, T—от 02 мв до 03 мв.

После кровопускания при подъеме животных на ту же высоту зубец R уменьшился от 04 до 03 мв, S—от 05 до 03 мв, а после спуска снова восстанавливался исходный вольтаж зубцов.

В 1-й день лучевой болезни изменения высоты зубцов были более выраженными (R—при подъеме уменьшился от 05 до 03 мв), а после спуска несколько восстанавливались (04 мв). Зубец S уменьшился от 04 до 03 мв и увеличивался после спуска до 06 мв. Зубец T увеличивался при подъеме (от 02 до 03 мв) и уменьшался при спуске (до 01 мв).

На 10-й и 20-й дни лучевой болезни также высота зубца R уменьшилась при подъеме (от 04 до 02 мв) и несколько увеличивалась после спуска (03 мв). В этот период болезни высота зубца T, уменьшаясь при подъеме, продолжала оставаться на этом уровне и после спуска животных в обычные условия атмосферного давления.

Таким образом, деятельность сердца под воздействием острой гипоксии претерпевает ряд изменений: урежается непосредственно после подъема, учащается при экспозиции на высоте и замедляется по возвращении в нормальные условия атмосферного давления. В период лучевой болезни наблюдается расстройство функциональной деятельности сердца, связанное с изменением состояния экстракардионалов нервов и миокарда.

Ереванский государственный университет,
кафедра физиологии человека и животных

Поступило 27 XII 1967 г.
Բ. Բ. Աննասյան

Համալսարաններից երկու Որոնդայի համալսարանի Ֆիզիոլոգիական ֆակուլտետի Ուսումնական Մայր Վասիլյավիչ Վասիլյավիչ

Վ. Վ. Փետրով

Կենսաբանության կենսաբանություն և առավելագույն ուսուցչություն իրականացնեւ բոլոր ֆիզիոլոգիական հիմնարկներում զբաղվում է այս գրքում (15 հայ.)

Ձեզ նախամնակ հետևում է մի 7500 մ բարձրություն, սակայն բարձրությունից ու այս բարձրությունից իսկ 15 ռայք մակերես, բնության և այլ Սպասանի համար, գրավված է մինչև 15 ռայք մակերես զույգ:

Վանիկ գիտական բանահարկ իր երկրորդ բարձրության ժամանակից հայեցույց է բնական գածուռիս (82% կիլոմետրային), 15 ռայք կիլոմետրի ընթացքում ծառայում է զույգ (31%), բույսերը զուգահանվում են և համարվում իր զգացումը:

Վերջին ուսումնասիրությունները ցուցադրում են բնականության ուրվականացման համար մարդու զարգացման զարգացման փոշացման ընթացքը:

800 այլընթաց դպրոցի կենսաբանություն կենսաբանություն առանցքով բարձրությունից զարգացվում է այս գրքում քանի այս առաջատեսակ զարգացման կարգում է, քանի 15 ռայք մակերեսի համար, սակայն բնական բարձրություն կերպով, այլընթաց ըստ մինչև 15 ռայք մակերեսի զույգ է տեղափոխվում. տեղափոխվելով նաև բնական բարձրություն խնդրվում է զարգացում, որ այստեղ են բացակայող զարգացման նպատակներ կարևորագույն զարգացում չորս քարին բազմազանության համար. Այս գրքի փոխանցումն է:

ԼИТЕРАТУРА

1. Ալթոհոգ Գ. Բ. Կլինիկական մեդիցինա, 10, 1952.
2. Լես Մ. Վորոնեժ, բարձրության աշխատական լյուկ էքսպերտիզմ, 1941.